Сократительная функция белков: примеры

Светильник

Источник света

Поражение миокарда при ишемии

В 90% случаев в коронарных сосудах при ишемической болезни находят атеросклеротические бляшки, перекрывающие диаметр питающей артерии. Определенную роль играют метаболические изменения под влиянием нарушенной нервной регуляции — накопление катехоламинов.

При стенокардии состояние миокарда можно охарактеризовать как вынужденную «спячку» (гибернацию). Гибернирующий миокард представляет собой приспособительную реакцию на дефицит кислорода, молекул аденозинтрифосфата, ионов калия, основных поставщиков калорий. Возникает локальными участками при длительном нарушении кровообращения.

Поддерживается равновесие между снижением сократимости в соответствии с нарушенным кровоснабжением. При этом клетки-миоциты вполне жизнеспособны и могут полностью восстановиться при улучшении питания.

«Оглушенный миокард» — современный термин, характеризующий состояние мышцы сердца после восстановления коронарного кровообращения в участке сердца. Клетки еще несколько дней накапливают энергию, сократимость в этот период нарушена. Его следует отличать от фразы «ремоделирование миокарда», что означает фактические изменения в миоцитах под воздействием патологических причин.

Наиболее часто подобные изменения сопровождают нестабильную стенокардию. Но, если произойдет более стойкое снижение доставки питательных веществ или резкий рост потребности (физическая нагрузка), то процесс ишемии идет по более тяжелому типу к некрозу мышечного слоя.

Сократимость миокарда по ЭКГ

Сократительная способность сердечной мышцы может быть оценена уже при проведении электрокардиограммы (ЭКГ), так как этот метод исследования позволяет зарегистрировать электрическую активность миокарда. При нормальной сократимости сердечный ритм на кардиограмме является синусовым и регулярным, а комплексы, отражающие сокращения предсердий и желудочков (PQRST), имеют правильный вид, без изменений отдельных зубцов. Также оценивается характер комплексов PQRST в разных отведениях (стандартных или грудных), и при изменениях в разных отведениях можно судить о нарушении сократимости соответствующих отделов левого желудочка (нижняя стенка, высоко-боковые отделы, передняя, перегородочная, верхушечно-боковая стенки ЛЖ). В связи с высокой информативностью и простотой в проведении ЭКГ является рутинным методом исследования, позволяющим своевременно определить те или иные нарушения в сократимости сердечной мышцы.

Биоэлектрические основы сократимости миокарда

цикл сокращения сердца

Сократительная способность всего миокарда зависит от биохимических особенностей в каждом отдельном мышечном волокне. Кардиомиоцит, как и любая клетка, имеет мембрану и внутренние структуры, в основном состоящие из сократительных белков. Эти белки (актин и миозин) могут сокращаться, но только в том случае, если через мембрану в клетку поступают ионы кальция. Далее следует каскад биохимических реакций, и в результате белковые молекулы в клетке сокращаются, словно пружинки, вызывая сокращение и самого кардиомиоцита. В свою очередь, поступление кальция в клетку через специальные ионные каналы возможно только в случае процессов реполяризации и деполяризации, то есть ионных токов натрия и калия через мембрану.

При каждом поступившем электрическом импульсе мембрана кардиомиоцита возбуждается, и активизируется ток ионов в клетку и из нее. Такие биоэлектрические процессы в миокарде возникают не одномоментно во всех отделах сердца, а поочередно – сначала возбуждаются и сокращаются предсердия, затем сами желудочки и межжелудочковая перегородка. Итогом всех процессов является синхронное, регулярное сокращение сердца с выбрасыванием определенного объема крови в аорту и далее по всему организму. Таким образом, миокард выполняет свою сократительную функцию.

Свойства сердечной мышцы

Кроме сократимости, миокард обладает другими исключительными свойствами, которые присущи только мышечной ткани сердца:

  1. Проводимость — приравнивает миоциты к нервным волокнам, поскольку они тоже способны проводить импульсы, передавая их от одних участков в другие.
  2. Возбудимость — за 0,4 сек. в возбуждение приходит вся мышечная структура сердца и обеспечивает полноценный выброс крови. Правильный ритм сердца зависит от возникновения возбуждения в синусовом узле, расположенном в глубине правого предсердия и дальнейшего прохождения импульса по волокнам к желудочкам.
  3. Автоматизм — способность самостоятельно образовывать очаг возбуждения в обход установленного направления. Этот механизм вызывает нарушение правильного ритма, поскольку другие участки берут на себя роль водителя.

Очаг называется «эктопическим», выявляется на ЭКГ

Разные заболевания миокарда сопровождаются незначительными или выраженными нарушениями перечисленных функций. Они определяют клинические особенности течения и требуют специального подхода к лечению.

Рассмотрим патологические изменения в миокарде и их роль в возникновении отдельных болезней сердечной мышцы.

Сократимость миокарда по ЭхоКГ

ЭхоКГ (эхокардиоскопия), или УЗИ сердца, является золотым стандартом в исследовании сердца и его сократительной способности благодаря хорошей визуализации сердечных структур. Сократимость миокарда по УЗИ сердца оценивается исходя из качества отражения ультразвуковых волн, которые преобразуются в графическое изображение с помощью специальной аппаратуры.

фото: оценка сократимости миокарда на ЭхоКГ с нагрузкой

По УЗИ сердца в основном оценивается сократимость миокарда левого желудочка. Для того, чтобы выяснить, миокард сокращается полностью или частично, необходимо вычислить ряд показателей. Так, вычисляется суммарный индекс подвижности стенок (на основании анализа каждого сегмента стенки ЛЖ) – WMSI. Подвижность стенок ЛЖ определяется исходя из того, на какой процент увеличивается толщина стенок ЛЖ во время сердечного сокращения (во время систолы ЛЖ). Чем больше толщина стенки ЛЖ во время систолы, тем лучше сократимость данного сегмента. Каждому сегменту, исходя из толщины стенок миокарда ЛЖ, присваивается определенное количество баллов – для нормокинеза 1 балл, для гипокинезии – 2 балла, для тяжелой гипокинезии (вплоть до акинезии) – 3 балла, для дискинезии – 4 балла, для аневризмы – 5 баллов. Суммарный индекс  рассчитывается как отношение суммы баллов для исследуемых сегментов к количеству визуализированных сегментов.

Нормальным считается суммарный индекс, равный 1. То есть если врач “посмотрел” по УЗИ три сегмента, и у каждого из них была нормальная сократимость (у каждого сегмента по 1 баллу), то суммарный индекс = 1 (норма, а сократительная способность миокарда удовлетворительная). Если же из трех визуализированных сегментов хотя бы у одного сократимость нарушена и оценена в 2-3 балла, то суммарный индекс = 5/3 = 1,66 (сократимость миокарда снижена). Таким образом, суммарный индекс должен быть не больше 1.

срезы сердечной мышцы на ЭхоКГ

В тех случаях, когда сократимость миокарда по УЗИ сердца в пределах нормы, но у пациента имеется ряд жалоб со стороны сердца (боли, одышка, отеки и др), пациенту показано проведение стресс-ЭХО-КГ, то есть УЗИ сердца, выполняемого после физической нагрузки (ходьба по беговой дорожке – тредмил, велоэргометрия, тест 6-минутной ходьбы). В случае патологии миокарда сократимость после нагрузки будет нарушена.

СОКРАТИМОСТЬ СЕРДЕЧНОЙ МЫШЦЫ

Прочитайте:

  1. A- Мышцы языка
  2. A- Состояние двубрюшной мышцы
  3. I. ГЕМОДИНАМИКА И СОКРАТИМОСТЬ СЕРДЦА
  4. II. Жевательные мышцы
  5. II.Наружные мышцы таза
  6. III. Синдром сердечной кахексии.
  7. IV. мышцы надгортанника
  8. S: Мимические мышцы являются производными ### жаберной дуги.
  9. V2: Мышцы и фасции области плечевого сустава. Мышцы и фасции плеча. Топография подмышечной впадины и плеча. Мышцы, фасции и топография предплечья.
  10. V2: Мышцы, фасции и топография бедра, голени и стопы. Механизм движений в суставах нижней конечности. Разбор лекционного материала.

Термин «сократимость» отражает способность сердечной мыш­цы сокращаться и совершать работу при определенном растяжении ее волокон. На сократимость влияют такие факторы, как раздраже­ние симпатических волокон или действие норадреналина, повыше­ние концентрации кальция или воздействие другими агентами. Сила сокращения возрастает также при увеличении нагрузки на сердце вследствие повышения давления в аорте или увеличении частоты сердечных сокращений.

Масса и размеры

сердца человека в значительной степени зависят от его мышечной деятельности и состояния здоровья. Впервые увеличение размеров сердца у спортсменов отметил 5.Ш. Непзспеп (1899). Он расценил этот факт как свидетельство неблагоприятного влияния спорта. Он ввел термин «спортивное сердце» для обозначения патологических процессов в миокардеГ развивающихся под влиянием физических упражнений. Однако по­зднее было доказано, что увеличение сердца под воздействием сис­тематических тренировок (спортивная гипертрофия) необходимо для обеспечения высокой работоспособности (Р. Оеитзсп, Ь. Каиг, 1925; Н. НегхЫтег, 1933; и др.).

В результате исследований и наблюдений было установлено, что под влиянием систематических физических нагрузок происходит умеренное расширение полостей желудочков. Увеличение разме­ров сердца и компенсаторная гипертрофия — обратимые явления, но при условии, что спортсмен, тренируясь, не перенес инфекци­онного заболевания, т. е. тренировался здоровым. После прекра­щения систематических тренировок объем сердца постепенно уменьшается.

Наиболее выражено увеличение абсолютных размеров сердца при тренировке на выносливость (8. Миз5П0Й»е1а1., 1958; А. Рцайе, 1959; и др.). У физически малоактивных людей абсолютная вели­чина объема сердца 740 см3, у спортсменов — 1010 см3. Примерно такая же разница (в среднем на 125 г) отмечена и в массе сердца (Н. КеЫеИ е! а!., 1960; и др.).

У бегунов на средние и длинные дистанции МОК в покое со­ставляет в среднем 2,74 л/мин, у нетренированных лиц — 4,8 л/мин (Н. МеИего\\асг, 1956; и др.).

У нетренированных лиц объем циркулирующей крови (ОЦК) меньше, чем у спортсменов (В.И. Дубровский, 1990, 1992; ЗсЬппаЧ е( а1„ 1962; Ь. Озса1 ех а1., 1968; и др.).

Определение минутного объема сердца (МОС) посредством сер­дечного индекса (л/м2 поверхности тела) в минуту означает, что эта величина пропорциональна площади поверхности тела (Н. Тау1ог, К. Т1ес1е, 1952). Сердечный индекс используют для от­личия нормальных величин от патологических. Значение сердеч­ного индекса у здоровых людей в расслабленном состоянии нахо­дится в пределах 3-4 л/м2/мин (верхней и нижней границами нормы считаются 2,5 и 4,5 л/м2/мин).

В таблице 15.4 представлено примерное распределение минут­ного объема левого желудочка у здорового человека в покое в гори­зонтальном положении.

При дыхании 100%-ным кислородом парциональное давление кислорода в артерии (р02) увеличивается примерно до 500 мм рт. ст., и приблизительно 1,5 мл кислорода в растворенном состоянии пе­реносится плазмой. Поскольку этот кислород тут же поступает в ткани, из гемоглобина извлекается меньше кислорода, и артерио-венозная разница в насыщении кислородом уменьшается (табл. 15.5).

Физическая нагрузка существенно влияет на сердечный выброс и частоту сердечных сокращений (табл. 15.6).

У тренированных лиц при физической нагрузке ЧСС возраста­ет не в такой степени, как у нетренированных (при таком же при­росте сердечного выброса).

На сердечный выброс влияет ряд факторов: заболевания, воз­раст, тренированность и др. (табл. 15.7).

При миокардитах, кардиосклерозе и других болезненных состо­яниях сердечный индекс также уменьшается из-за снижения сокра­тимости миокарда.

Дата добавления: 2015-05-19 | Просмотры: 413 | Нарушение авторских прав | | | | | | 7 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Методы выявления жизнеспособного миокарда

Рисунок: Изотопные методы выявления жизнеспособного миокарда

Верхний ряд – сцинтиграфия с таллием-201 в покое. Исходно отмечается дефект накопления, который исчезает в фазу перераспределения, если миокард жизнеспособен, и остается, если миокард нежизнеспособен.

Средний ряд – сцинтиграфия с таллием-201, протокол с нагрузкой и повтоным введением препарата. При нагрузке отмечается дефект накопления, в фазу перераспределения он не заполняется, что может указывать на его нежизнеспособность. Однако при повторном введении препарата дефект исчезает, значит, миокард все же жизнеспособен.

Нижний ряд – позитронно-эмиссионная томография с исследованием перфузии и метаболизма. Снижение перфузии при сохраненном метаболизме (на что указывает захват 18F-фтордедзоксиглюкозы) говорит о жизнеспособности миокарда

18F-ФДГ — 18F-фтордезоксиглюкоза

ПЭТ – позитронно-эмиссионная томография

РФП – радиофармацевтический препарат

Оценка жизнеспособности миокарда проводится больным ИБС с нарушениями сократимости левого желудочка в покое, если в дальнейшем возможна реваскуляризация. Коронарная ангиография дает представление о поражении коронарных артерий и о том, возможна ли реваскуляризация, но не позволяет предсказать возможное восстановление сократимости после нее. Отличить жизнеспособный миокард от нежизнеспособного позволяют такие методы, как

  • однофотонная эмиссионная томография
  • позитронно-эмиссионная томография с метаболически активными радиофармацевтическими препаратами
  • добутаминовая стресс-ЭхоКГ 
  • МРТ с поздним контрастированием

Все эти методы основаны на разных свойствах жизнеспособного миокарда. При выборе того или иного метода обычно исходят из возможностей и традиций лечебного учреждения, хотя лучше было бы исходить из особенностей больного.

Как посчитать

Вычисление индекса массы миокарда осуществляется, в соответствии с данными эхокардиографии. Здесь вероятны различные режимы. При этом врачу необходимо задействовать возможности инструментальных методов, сопоставляя двух- и трехмерные изображения, в том числе показания допплерометрии, ультразвуковых сканеров. С практической точки зрения большая масса левого желудочка играет наибольшую роль, так как именно этот отдел имеет наибольшее значение и считается максимально перегруженным. Эту камеру сердца рассматривают, в первую очередь.

Расчет индекса масса миокарда производится по различным формулам. Дело в том, что у обследуемых пациентов всегда есть свои, индивидуальные особенности геометрии полостей органа. Соответственно, вывести некую стандартную формулу довольно трудно. С другой стороны, формулировку осложняет и большое количество возможных формул и критериев гипертрофии того или иного отдела получается, что у одного и того же пациента при использовании определенных способов оценки данных эхокардиографии обнаруживаются отличия.

На сегодняшний день удовольствия улучшить ситуацию благодаря прогрессивным технологиям. Появились новейшие аппараты УЗИ-диагностики. Они допускают минимальные погрешности. И все же формул для определения массы миокарда левого желудочка существует несколько. Американское эхокардиографическое сообщество предложило основное из них. Именно оно и считается наиболее достоверным. Здесь учитывается:

  • толщина мускульной ткани в межжелудочковой перегородке,
  • толщина задней стенки левого желудочка после наполнения кровью и перед очередным сокращением,
  • конечный размер левого желудочка на фазе диастолы.

Сама формула выглядит таким образом:

Помимо объективной оценки этого показателя, встает и другая проблема. Но сегодня требуется обнаружить четкие критерии индексации для выявления гипертрофии и ее степени. Ведь, как и было сказано ранее, индекс этот напрямую связан с размером тела человека. Это величина, которая учитывает параметры роста и веса, соотнося массу мускульной ткани на площадь поверхности тела или рост человека. Однако у взрослых рост отличается постоянством, поэтому на расчет параметров он не оказывает существенного влияния. Возможно, что его в будущем признают лишним, так как он может привести к ошибочным выводам.

Острый инфаркт миокарда (ОИМ) или сердечный приступ — острый коронарный синдром. Он является наиболее тяжелым ишемической болезни сердца (IBS).

Острые коронарные синдромы и острые формы ишемической болезни сердца разделены на:

  • нестабильную стенокардию,
  • инфаркт миокарда без подъема ST на ЭКГ и инфаркта миокарда с подъемом ST.

Общая черта между всеми острыми коронарными синдромами, возникающими в результате патофизиологических процессов — атеросклероз и закупорка (полная или неполная) сосудов, которые поставляют кровь к сердцу (коронарные артерии) и острый дисбаланс между потребностями кислорода и его подачей в области васкуляризации из пострадавшего кровеносного сосуда.

Нестабильная стенокардия или так называемое прединфарктное состояние связано с неполной окклюзией коронарной артерии. Некроз сердечной мышцы отсутствует, поэтому нет признаков сердечного приступа.

В этом видео идет речь о предынфарктном состоянии.

Острый инфаркт из миокарда сопровождает некроз (гибель) клеток миокарда, которые развиваются под воздействием различных причин, запускающих острую ишемию миокарда. Это наиболее часто встречается при поражении атеросклерозом одной или нескольких коронарных артерий с развитием внутрикоронарного тромбоза после отсоединения от стенки атеросклеротической бляшки, что приводит к временной или постоянной окклюзии одного или нескольких сосудов. В зависимости от толщины стенки миокарда сердечные приступы делятся на две группы (на основе изменений ЭКГ):

  • Нетрансмуральный инфаркт — чаще всего происходит из-за неполной окклюзии коронарной артерии, но в этом случае наблюдается некроз миокарда, который не влияет на всю толщину сердечной мышцы. Разница между ключевыми формами обнаруживается в лабораторных тестах, которые сообщают о некрозе миокарда (специфический маркер — Тропонин) — при этой форме он выше.
  • Трансмуральный инфаркт — происходит из-за полной окклюзии коронарной артерии, что приводит к полному нарушению подачи кислорода и некрозу мышечных клеток в области кровоснабжения пораженной артерии. Отмирание первых клеток миокарда достигается через 15 минут закупорки артерии.

Определяющими факторами для развития обоих типов являются ранняя спонтанная реперфузия и наличие развитой коллатеральной сети сосудов в зоне ишемии.

Дыхание

Строение и функции органоидов движения

Строение ресничек и жгутиков, как у растительных, так и животных клеток сходно. Под электронным микроскопом обнаружено, что реснички и жгутики это немембранные органоиды, состоящие из микротрубочек. Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны.

Жгутики и реснички обеспечивают не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек.

Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.

Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек), которое получило название амебоидного. В основе его лежит движение молекул особых белков, называемых сократимыми.

Биоэлектрические основы сократимости миокарда


цикл сокращения сердца Сократительная способность всего миокарда зависит от биохимических особенностей в каждом отдельном мышечном волокне. Кардиомиоцит, как и любая клетка, имеет мембрану и внутренние структуры, в основном состоящие из сократительных белков. Эти белки (актин и миозин) могут сокращаться, но только в том случае, если через мембрану в клетку поступают ионы кальция. Далее следует каскад биохимических реакций, и в результате белковые молекулы в клетке сокращаются, словно пружинки, вызывая сокращение и самого кардиомиоцита. В свою очередь, поступление кальция в клетку через специальные ионные каналы возможно только в случае процессов реполяризации и деполяризации, то есть ионных токов натрия и калия через мембрану.

При каждом поступившем электрическом импульсе мембрана кардиомиоцита возбуждается, и активизируется ток ионов в клетку и из нее. Такие биоэлектрические процессы в миокарде возникают не одномоментно во всех отделах сердца, а поочередно – сначала возбуждаются и сокращаются предсердия, затем сами желудочки и межжелудочковая перегородка. Итогом всех процессов является синхронное, регулярное сокращение сердца с выбрасыванием определенного объема крови в аорту и далее по всему организму. Таким образом, миокард выполняет свою сократительную функцию.

Сократительная способность миокарда

Прогрессирующий склероз миокарда, очаговая атрофия мышечных волокон с явлениями белково-липоидной дистрофии, гнездная гипертрофия мышечных волокон, дилатация сердца — основные морфологические признаки старческого сердца.

Одна из основных причин развития дистрофических и атрофических изменений миокарда при старении — нарушение энергетических процессов, развитие гипоксии.

При старении снижается интенсивность тканевого дыхания миокарда , изменяется сопряжение окисления и фосфорилирования, уменьшается число митохондрий, наступает их деградация, неравномерно изменяется активность отдельных звеньев дыхательной цепи, падает содержание гликогена, нарастает концентрация молочной кислоты, активируется интенсивность гликолиза, снижается количество АТФ и КФ, падает активность креатинфосфокиназы (КФК)

Известно, что сократительная способность миокарда контролируется множеством механизмов, наиболее важный из которых — механизм Франка—Старлинга и прямой инотропизм, который тесно связан с адренергическим влиянием на сердце. В то же время показано, что с возрастом механизм Франка—Старлинга значительно страдает.

Это связано с уменьшением эластичности мышечных фибрилл как таковых, с увеличением малоэластичной соединительной ткани, с появлением атрофических изменений и гипертрофии отдельных мышечных волокон, а также с изменениями в пределах самого актомиозинового комплекса.

Следует отметить и нарушение свойств миокардиальных сократительных протеинов, изменение актомиозинового комплекса. Бинг (Bing, 1965) считает, что стареющее сердце постепенно теряет способность переводить в механическую работу энергию, полученную в процессе ее образования.

Автором установлено снижение контрактильной способности актомиозиновых нитей старых людей. К тому же отмечено, что количество миофибриллярных белков с возрастом уменьшается. Несомненно, все эти изменения могут быть причиной функциональной недостаточности миокарда.

Док (Dock, 1956) в качестве одной из причин нарушения сократительной способности миокарда в старческом возрасте усматривает нарушение минерального обмена, в частности избыточное накопление ионов Na+. По данным Бюргера (Burger, 1960), с возрастом в сердечной мышце падает содержание воды, ионов К+ и Са2+. Мишель (Michel, 1964) указывает, что изменение химической среды (трансминерализация, уменьшение богатых энергией фосфатов) протекает параллельно с ограничением сократительной способности миокарда, его компенсаторной возможности.

Показано, что с возрастом содержание внутриклеточного иона Na+ увеличивается, а содержание иона К+ уменьшается. Фаза реполяризации ПД при этом удлиняется. Известно, что деполяризационная волна, распространяясь по наружной мембране мышечной клетки, захватывает и Т-тубулярную систему и проникает в элементы саркоплазматического ретикулума (СПР)

, что вызывает освобождение кальция из цистерн СПР.

Кальциевый «залп» приводит к повышению концентрации иона Са2+ в саркоплазме, в результате чего ион Са2+ поступает в миофибриллы, связывается там с Са2+ — реактивным белком тропонином. Вследствие устранения тропомиозиновой репрессии происходит взаимодействие актина и миозина, т. е. сокращение.

Наступление последующего расслабления определяется скоростью обратного транспорта иона Са2+ в СПР, что осуществляется системой транспортной Ga-Mg-зависимой АТФ-азой и требует определенного расхода энергии. Изменение отношения K+/Na+ может оказать влияние на состояние калий-натриевого насоса.

Можно полагать, что возникающие изменения отношения K+/Na+ и нарушения в кальциевом насосе существенно могут нарушить сократительную способность миокарда и диастолическое расслабление сердца в старости.

К тому же у старых животных выявлены изменения и в СПР — утолщение и уплотнение системы Т-каральцев, снижение их удельного веса в клетке, наблюдается увеличение контактов между сарколеммой и пузырьками СПР, которые, как известно, обеспечивают оптимальную скорость выхода и входа иона Са2+ в СПР. В этих условиях нарушаются оптимальные возможности для осуществления систолы и диастолы, в особенности при функциональном напряжении.

Как известно, синхронизация активности отдельных мышечных клеток имеет существенное значение в обеспечении сократительной способности сердца. Она во многом определяется состоянием вставочных дисков, т. е. местом контакта отдельных миокардиальных клеток. В то же время в эксперименте на старых животных (Фролькис и др., 1977б) при применении нагрузки обнаружено отчетливое уширение этих дисков — с 3—4-кратным увеличением расстояния между ними.

Особенности миокарда

Миокард обладает рядом физических и физиологических свойств, позволяющих ему обеспечивать полноценное функционирование сердечно-сосудистой системы. Эти особенности сердечной мышцы, позволяют не только поддерживать кровообращение, обеспечивая непрерывное поступление крови из желудочков в просвет аорты и легочного ствола, но также и осуществлять компенсаторно-приспособительные реакции, обеспечивая адаптацию организма к повышенным нагрузкам.

Физиологические свойства миокарда обуславливаются его растяжимостью и эластичностью. Растяжимость сердечной мышцы обеспечивает ее способность к значительному увеличению собственной длины без повреждения и нарушения своей структуры.

   Эластические свойства миокарда обеспечивают его способность возвращаться в исходную форму и положение после того, как заканчивается воздействие деформирующих сил (сокращение, расслабление).

Также, важную роль в поддержании адекватной сердечной деятельности играет способность сердечной мышцы к развитию силы в процессе сокращения миокарда и совершению работы во время систолы.

Что такое сократительная способность миокарда

Сократимость сердца – это одно из физиологических свойств сердечной мышцы, реализующее насосную функцию сердца за счет способности миокарда сокращаться во время систолы (приводя к изгнанию крови из желудочков в аорту и легочной ствол (ЛС)) и расслабляться в период диастолы.

Вначале осуществляется сокращение предсердных мышц, а затем сосочковых мышц и субэндокардиального слоя желудочковых мышц. Далее, сокращение распространяется на весь внутренний слой желудочковых мышц. Это обеспечивает полноценную систолу и позволяет поддерживать непрерывный выброс крови из желудочков в аорту и ЛС.

Сократительная способность миокарда поддерживается также его:

  • возбудимостью, способностью генерировать потенциал действия (возбуждаться) в ответ на действие раздражителей;
  • проводимостью, то есть способностью проводить сгенерированный потенциал действия.

Сократимость сердца зависит также и от автоматизма сердечной мышцы, проявляющейся самостоятельной генерацией потенциалов действия (возбуждений). Благодаря этой особенности миокарда, даже денервированное сердце некоторое время способно сокращаться.

От чего зависит сократимость сердечной мышцы

Физиологические особенности сердечной мышцы регулируются блуждающими и симпатическими нервами, которые способны влиять на миокард:

  • хронотропно;
  • инотропно;
  • батмотропно;
  • дромотропно;
  • тонотропно.

Эти эффекты могут быть как положительными, так и отрицательными. Увеличенная сократительная способность миокарда называется положительным инотропным эффектом. Снижение сократимости миокарда называют отрицательным инотропным эффектом.

Батмотропные эффекты проявляются во влиянии на возбудимость миокарда, дромотропные – в изменении способности сердечной мышцы к проводимости.

Регуляция интенсивности метаболических процессов в сердечной мышце осуществляется посредством тонотропного воздействия на миокард.

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Лечение

Лечить гипертрофию сердечной мышцы можно медикаментозно или оперативно. Главная задача терапевтического воздействия – привести объем миокарда к нормальному состоянию или предотвратить его дальнейшее разрастание. Лечебный процесс будет зависеть от причины, вызвавшей патологию.

Медикаменты

  1. Так как чаще всего гипертрофию вызывает гипертония, необходим прием гипотензивных средств.
  2. Другая группа препаратов – лекарства, необходимые для поддержания работы сердечной мышцы, улучшения питания миокарда.
  3. Симптоматические средства. Они нужны для устранения неприятных проявлений: одышка, аритмия, болевой синдром, отеки.

Хирургическое вмешательство

  1. Иссечение части миокарда, расположенного между желудочками (процедура получила название операции Морроу).
  2. Исправление или протезирование клапанов (митрального, аортального).
  3. Устранение спаечных участков, перекрывающих вход в аорту (проведение комиссуротомии).
  4. Искусственное расширение артериального просвета путем введения имплантанта (стента).
  5. Вживление электрокардиостимулятора.

Гипертрофия миокарда левого желудочка не представляет особой угрозы, если изменения умеренные и выявлены своевременно. В некоторых случая даже можно обойтись без лечения. Достаточно соблюдать рекомендации врача касательно питания, физических нагрузок, поддержания стабильного эмоционального фона.

Однако нельзя игнорировать данный диагноз. Выраженное прогрессирование патологического процесса без принятия адекватных мер может привести к тяжелым последствиям (левожелудочковая недостаточность), в том числе и смертельно опасным (инфаркт миокарда).

Сократимость миокарда по ЭхоКГ

ЭхоКГ (эхокардиоскопия), или УЗИ сердца, является золотым стандартом в исследовании сердца и его сократительной способности благодаря хорошей визуализации сердечных структур. Сократимость миокарда по УЗИ сердца оценивается исходя из качества отражения ультразвуковых волн, которые преобразуются в графическое изображение с помощью специальной аппаратуры.

фото: оценка сократимости миокарда на ЭхоКГ с нагрузкой

По УЗИ сердца в основном оценивается сократимость миокарда левого желудочка. Для того, чтобы выяснить, миокард сокращается полностью или частично, необходимо вычислить ряд показателей. Так, вычисляется суммарный индекс подвижности стенок (на основании анализа каждого сегмента стенки ЛЖ) – WMSI. Подвижность стенок ЛЖ определяется исходя из того, на какой процент увеличивается толщина стенок ЛЖ во время сердечного сокращения (во время систолы ЛЖ). Чем больше толщина стенки ЛЖ во время систолы, тем лучше сократимость данного сегмента. Каждому сегменту, исходя из толщины стенок миокарда ЛЖ, присваивается определенное количество баллов – для нормокинеза 1 балл, для гипокинезии – 2 балла, для тяжелой гипокинезии (вплоть до акинезии) – 3 балла, для дискинезии – 4 балла, для аневризмы – 5 баллов. Суммарный индекс рассчитывается как отношение суммы баллов для исследуемых сегментов к количеству визуализированных сегментов.

Нормальным считается суммарный индекс, равный 1. То есть если врач “посмотрел” по УЗИ три сегмента, и у каждого из них была нормальная сократимость (у каждого сегмента по 1 баллу), то суммарный индекс = 1 (норма, а сократительная способность миокарда удовлетворительная). Если же из трех визуализированных сегментов хотя бы у одного сократимость нарушена и оценена в 2-3 балла, то суммарный индекс = 5/3 = 1,66 (сократимость миокарда снижена). Таким образом, суммарный индекс должен быть не больше 1.

срезы сердечной мышцы на ЭхоКГ

В тех случаях, когда сократимость миокарда по УЗИ сердца в пределах нормы, но у пациента имеется ряд жалоб со стороны сердца (боли, одышка, отеки и др), пациенту показано проведение стресс-ЭХО-КГ, то есть УЗИ сердца, выполняемого после физической нагрузки (ходьба по беговой дорожке – тредмил, велоэргометрия, тест 6-минутной ходьбы). В случае патологии миокарда сократимость после нагрузки будет нарушена.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий